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AFIT/GA/ENY/90D-8
Abstract

Averaged equations of motion were numerically
integrated over a time span of ten Earth years for various
inclinations, eccentricities, and perigee heights. Each
orbit (i.e. set of initial conditions) produced a standard
deviation of the variations in eccentricity (SDE) and
inclination (SDI). These were calculated using a polynomial
approximation to the variations. Surface plots of SDI & SDE
vs the initial conditions are then examined to ascertain the

critical inclinations.
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NUMERICAL ANALYSIS OF CRITICAL INCLINATIONS ABOUT THE PLANET

MARS

I. Introduction

Satellites are placed in a variety of orbits, usually
determined by the mission requirements of the satellite
payload. For instance, typical planetary mapping missions
require low, altitude, high inclination, and nearly circular
orbits. Conversely, communication relay satellites usually
occupy extremely high altitude and near zero inclination
orbits. One such satellite is the commercial Intelsat
satellite in Earth geosynchronous orbit. The basic
Keplerian two body equations are used to find an orbit that
meets the general requirements such as coverage, refresh
rate, etc. However, various gravitational, atmospheric, and
other effects tend to perturb the orbit from its initial
conditions. These effects can be relatively large and
primarily affect the inclination and eccentricity of an
orbit.

The amplitudes of these variations are primarily
dependent on the orbit's initial eccentricity and
inclination. Higher initial eccentricities show a direct
correla.ion to larger variations. The effect of initial
inclination on the variations is more complex. Those

initial inclinations that are determined to cause large
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variations in eccentricity and inclination are termed
critical inclinations. Figures 1 & 2 illustrate the

variations in eccentricity and inclination for an example

orbit.
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Figure 1. Example Inclination vs Time Plot: R_ = 6500 km

For the majority of satellite missions, such as Earth
communication satellites, it is desirable to minimize the
perturbations. The initial orbits are selected to meet
mission requirements and the satellites are station kept in
those orbits by thrusters. These thrusters require fuel,
which is often the limiting factor of satellite lifetime.

An alternate approach seeks to select orbit initial




conditions to maximize the perturbations. Such an orbit
could be used as a transfer orbit to save maneuvering fuel.
However, such a transfer often takes much longer than

mission constraints allow.
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Figure 2. Example Eccentricity vs Time Plot: R, = 6500 km

Whether the design2r seeks to minimize or maximize the
perturbations, the locations of the critical inclinations
are required. Therefore, the evolution of the selected
orbit over the lifetime of the satellite must be examined.
Both an analytic and numerical approach were applied in
finding the critical inclinations.

Both approaches start with the same governing equations



of motion, the Lagrange Planetary Equations in their
disturbing function form. The disturbing function accounted
for only the predominate gravitational perturbations of the
Mar's equatorial bulge (J2) and solar third body
perturbations. The Mars J, zonal harmonic is two orders of
magnitude larger than the other harmonics and is twice as
large as the Earths. This simplified the equations of
motion to permit an analytical analysis and reduced the
integration time for the numeric approach. The analytic
analysis represents the limiting case of variations over an
infinite time span. Therefore, a full numerical analysis
was required to find intermediate critical inclinations.
The numerical approach integrated orbits for six
different perigee heights, over a full range of initial
eccentricities and inclinations. This involved the
integration of over 56,000 orbits for a ten Earth year time
span. The integration of such a large number of orbits was
necessary to provide sufficient information for the
determination of the critical inclinations. However, the
shear amount of data precludes analysis of each individual
orbit. Therefore, an approach involving the determination
of a figure of merit for each orbit was used to reduce the
amount of data to a manageable size. The standard
deviations in eccentricity and inclination were selected as

the figures of merit and calculated for each orbit. Three-




dimensional surface plots of these deviations vs the initial
eccentricities and inclinations were then used to determine
the critical inclinations. The affect of using linear,
quadratic, and cubic data fits in calculating the standard
deviations was also examined. Figures 1 & 2 show a cubic

fit to the data.




IT. Analytical Development

Reference Frame

A Mars centered reference frame and classical elements were

used describe the motion of the satellite.

MARS A
SPIN ‘
AXIS j PERICENTER
i \-\
| N
| 0 \\SATELLITE
i ’ ’ APPARENT
1 ; - \ ’ SUN
r ; ORBIT
,// f )
; a |-
MARS [ e
EQUATORIAL s I oy
PLANE — ¥ — ; |l
. ST v

"~ ASCENDING NODE

Figure 3. Planet (Mars) Centered Reference Frame

Satellite orbital elements are defined as follows:
r = satellite radius vector

inclination of satellite orbit

-
1]

1 = argument of ascending node for satellite orbit

w = argument of periapsis for satellite orbit

0 = satellite central angle

By referencing everything to a Mars centered coordinate
frame, the Sun appears to orbit Mars in this reference frame.
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Therefore, the motion of the Sun with respect to Mars can be
described by a set of orbital elements as if the Sun was orbiting

Mars. The Sun's pseudo orbital elements are defined as follows:

r, = Sun radius vector

8, = Sun central angle

I, = inclination of Sun orbit

A = right ascension of the Sun

L = Planet centered latitude of the Sun

Equations of Motion

For a basic two body problem of a satellite orbiting Mars,
the motion can be described by the six classical orbital elements
that are constant in the inertial frame. Once these are known
for some epoch time, the position and velocity of the satellite
can be determined for any other time using the two body
equations. In reality, the two body elements are not constant.
They change with time due to the perturbative effects of drag,
Mars geopotential, Sun third body effects, etc. Since these
changes are relatively slow, the Keplerian elements can be used
to describe the satellite motion when combined with equations of
variation. The equations of variation describe the change of the
keplerian elements with time, based upon the perturbations. This
method is known as variation of parameters. The Lagrange
disturbing function approach was used for the equations of
variation.

In the Lagrange approach, the acceleration of the satellite

is written as the gradient of the gravitational potentials.




Note, this is only valid for conservative forces such as gravity.

d?r

s = V(R R (1)

= gradient operator

v
R, Mars gravity potential
Ry = Sun gravity potential

Through Canonical transformations, the two body motion may
be eliminated and the Lagrange equations for the perturbing
motion formed. The Lagrange Planetary Equations in their
disturbing function form (4,476-483):

e = eccentricity of satellite orbit

i = inclination of satellite orbit

b = semi-minor axis of satellite orbit

M = Mean Anomaly of satellite orbit

n = mean motion of satellite

i = gravitational parameter

(4.2828287E04 Kg’/sec? for Mars)

(1.3271544E11 Kg’/sec? for Sun)

R = the disturbing function



de _ b* OR _ b IR

dt na‘e OM  nale 0w

dai _ 1 dR , cosi OR

dt nab sini 9Q nab sini Jdw

da _ 2 OR

dt na oM

aQ _ 1 OR

dt nab sini di (2)
do _ _ _cosi OR, b 0R

dt nab sini 91 nale Oe

v _ . 2 9R _ _b* R
dt na oda nate de

where b = ajl-e? & n-= —“—3
\l a

Only the Mars J, and Sun third body disturbing potentials
were considered. Their development followed that of Breakwell's
Investigation of High Eccentricity Orbits About Mars (5) and

Durand's June 1989 MS Thesis (7).




Mars Disturbing Function

The first non-zero zonal harmonic is the J, term that
accounts for the equatorial bulge. This is the predominate
geopotential term for most planets and the only harmonic examined
in both the analytic and numerical develocpments. The J,
disturbing function has been shown to be

_ BadyRS

(1 - 3 sin%d) (3)
2r?

where R, is the Mars equatorial radius and § is the declination.
A transformation of the declination to a form containing the true
anomaly and the argument of periapsis was accomplished using

spherical geometry. From the spherical geometry

sind = sini sina

sini sin(x - (f + w)) (4)

sini sin(f + w)

Squaring this equation yields

sin?d = sin?i sin?(f + w)

1. . (5)
= 3 sin?i [1 -~ cos2(f + w)]

10
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Figure 5. Geometry of the Orbital Plane
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The transformed disturbing function is thus

J,RZ . L
Rm=u’"—231——3—51n21+-—3—81n21 cos2(f + w) (6)
2r? 2 2

Averaging of the Mars Disturbing Function

The mean anomaly was averaged out of the Mars disturbing
function by integrating the function over one orbit and dividing

by the change in mean anomaly (2m).

R =L (R aM (7)
m 2n Jo m

The integration was accomplished using Hansen's Coefficients (2).
A brief description and derivation of this is included in

Appendix A. Substituting in the disturbing function yields

2
— 1 2x pmJ;Re 3 s o
R = — —/—=_"[1 - = sin?i|aM
m 2w Jo 2r? ( 2 °* l)
(8)
2n 3 J, R? ] .
s [P 2B in2g cos2(fre) dM

21 Jo 4r?

Let

J. R -3
A = p'_”’_E___Q(l - % sinzi)._l'_f2ﬂ (_E) aM
Q

Ip J,RZ .. 2 -3
B = _L:_i_'i sin?1i {.é};fn(é) cos2(f+w) dM}
a Q

12




Using trigonometry, B was transformed to

3 lJ'szRi

2 ~3
B= —% < = sinzi{—l-f n(iﬁ (cos2f cos2w - sin2f sin2w) dM}
4a° 2nto 1\ a
3p_J,RE . . -3
B = 2Pnvacte 31n~1{(coszw —l—f flq cos2f dM +
433 2nJo \ a
A -3 s ,)
- sin2w — f ( ) 51n2f'@Mf
(10)

By employing Hansen's coefficients from Appendix A

. . )
2111: 0” (—é) dM = X;°'° = (1-e?) %2

2 -3
B (i) sin2f dM = 0 (11)
27 0 a

2 -3 _
e f"(i cos2f dM = X;*% = 0
27 Jo a

From this "B" is found to equal zero. Therefore the averaged
disturbing function is equal to the "A" equation.
2
~ l»"szRe 3

1 - =sin?i (12)
T 243 (1_ez)y? 2

)
)

13




Solar Disturbing Function

The third body effects of the Sun on the satellite motion

may be derived from Newton's basic Law of Universal Gravitation.

— m, _ m, —
Fy = -Gm 5 L1 * I3
I3 Iy
(13)
— m _ m, —
F, = -Gm, Lo ¥ —3 Iy
T2 Iy
dér, F, m, _ m, —
21 = —= =-G —%I21 T,
dt ml LIZI I31 ] (14)
2= _— r 3
d‘r, F, m, — m, _
2 = =G| —I,+ —Iyp
de m, Iz I3z
= 23 25
5 .5 - F d“r,, d‘r,  d’r,
21 - 1 2 2 - 2 2
dt dt dt
d?r 3 m m m
1o = 3 y — 3 —
dez Cl—5 T * —5 I * Gl—FT* —5 Iy (15)
Iy Iy Iyp 32
d*r. (m, ~ m) — I, I,
.:,1 - -G P : 1 7, +Gm, 332 _ 331
dc* I Iy I'sy
14




Since m2 >> ml, let m2 + ml = m2

d?r, — T, r.
21 _ _ P‘mr21 ST Bt H 32 (16)
dt? r231 1'331 I332
With a change of variables to the notation of figure 3.
I =T
1?23 = -I—'n:fs (17)
r—31 =TI - f—s
The acceleration of the satellite is
2 — r-r, T
Ir o Eop_oy I T, Is| - w(r, + Ry (18)
dt? r3 lry - |? rl

The first term of the above equation is the Mars and satellite
two body problem. The second term is the acceleration due to the
Sun third body effects. As shown above, the acceleration of the
satellite can be expressed as the gradient of the gravitational
potentials of the Sun and Mars. Therefore, the gradient of the

Sun's potential is

(19)

By finding the equation that satisfies this condition, the Sun's

gravitational potential is found to be

15




= (20)

[
NI
0w F;l

Now this must be put in the form of a disturbing function to the

Mars-satellite two body problem.

p=f.-7
p2=lr—s_‘?|2=(?s-f).(175—ﬂ
2=r r_-2rr,+rr
p s 5 & (21)
p2 = rZ - 2rr_cosB + r?
r-r.
where B = =
rr,
By factoring out rs2 and taking the square root
5 5 1/2
p=r51+r—2— L cosB = |r, - I (22)
I's Is
Substituting in, the Mars gravitational potential becomes
n 2 e B
R = s 1+I_— ICOSB . Icoess (23)
I's Ij Is Ts
16




Using the binomial expansion

5 2 -1/2 o ‘i 2 n
1+| £ - 2L cosB = 2: 2 L’ _2I cosB
Iz Ig n=0 n Iz Iy
s s (24)

The higher order terms above (r/rs)2 can be neglected since

r, >>> r. The above series is approximated as

2
1+ ié-—2rcosB = 3
2 Iy Is I's

-1/2
2 2
1 - L EE_2T osBl|+ 2| AL cos?B (25)
r I 8 :
s

The Sun gravitational potential becomes

2 2
I + 3r

2r2 2rk

*
[}

cos?B

R = 1-

N
@

(26)

+

s' r?
= 1+ 2(3coszB--1)
2r2

H
1

The Suns gravitational potential at Mars is equal to the two body

term plus the disturbing function.

Bs , g (27)

17




Therefore, the solar disturbing function is

I2
R, = "53 [3cos?B - 1]
2I;
(28)
— = \2
_ BT 3(rr5) -1
2I2 rry
The radial vectors are now transformed to the orbital
elements of the satellite and Sun, defined in figure (1). For

ease of notation, the sin and cos functions will be abbreviated
using S = sin and C = cos. From the physical geometry, the unit
vectors in the radial satellite and Sun directions are

8 = L =13,Cy + CaC;S,
r

S;Ss
! (29)
— CaCy
r
és = —S = CLSA
rS
Sy
The dot product of these unit vectors is
3
é,é, = s
rr,
= CQCGCACL - SQCiSQCACL + SQCGCLSA + CQCISBC'LSA + SiSOSL (30)

= GCrlia - * CiSeCrSg . a) * S:iSSL

18




Substituting into the solar disturbing function results in

2
_ BT
s 7 3

2r

{3[CCLCq - py * CiSgCLS (g -ay + S;SpS, 1% - 1} (31)

Expanding squared term yields

R, = ”Siz{s[f(lcg + 2K, G Sy + Ky S§] - 1} (32)
2r;

Where

Ky = (C,Cq _4))°?

2
S.C.SiCa-a - CCiSia-aCaa-a (33)

(CiCLS(Q -A) T SLSi)2

The disturbing function is now written in terms of the satellites

true anomaly using

0=f+ow
G = % (1 + Cye)
(34)
592 = i (1 - CZG)
2
255Cy = Sye
The final form of the solar disturbing function is
r 3
Rs = a 3 {iAlcz(fun) + 3A232(f0w) t =4y - 1} (35)
2[5 2 2

19




Where

(36)

20




Averaging the Solar Disturbing Function

Just as with the Mars gravitational disturbing function, the
fast periodic mean anomaly can be averaged out of the solar
disturbing function. This is accomplished by integrating the
disturbing function with respect to the mean anomaly over one
orbit and dividing by the total change in mean anomaly (27).

Thus the average solar disturbing function is

-_ 1 2%
L 37
R, = == fo R, dM (37)

Before integrating, the true anomaly must be separated from the

argument of periapsis w. Using the trigonometric relations

< = GGy ~ SirSae

2(frw)
(38)

Siirewy = S2eCoy + CorSay

The solar disturbing function may now be written as
Bel (3 3
R, = 25 3 {‘EAlczfczm - “2‘A152f52m + 34,5,:C,
[S
3 “
+* 38,065, * EAs - l}

(39)

r?
Rg = B {(‘B‘A‘A Coo 3A232w)czf + (3A2C20 - %AISE,‘,)SU v

2 ~
4

2r

21




Upon rearranging to a form useful for employing Hansen's

Coefficients
u a2 3 r 2
Rs = —;T{('EAl Cu * 3A2520)(E) Cor
Ts (40)
3 r\? 3 r\2
PG - 3As(S) st (3A (S

Employing Hansen's coefficients (Appendix A) to average out the

Mean Anomaly using

\ a 2
2
1 r# (i) S, dM = 0 (41)
21 Jo a
2 2
_1f"(£ dM = X230 =1 + 2e?
2n Jo a 2

After substitution, the averaged solar disturbing function

becomes

2r; 2 2 2
(42)
a2
= Ps L‘r’_ezAle + 15e%A,5,, + (2 + 332)(3’43 - 1)
4arl L 2 . 2

22




Substituting in the "A" variables results in

—_ p,saz

ar.

x
u

15
{TeZ[C§CfQ_A) - (C;C S - SLSi)Z]sz

; (43)
+ 15e2{C,S,5;Cian ~ CLCiClan Siaem } Szo *

+ (2 + 362)[%[C2C220-A) + (C;C Sigp - 5,557 - 1]}

However, this form still contains periodic effects due to
the motion of the Sun. These may be averaged out when the mean
motion of the Sun is greater than the rate of change of either o
or 1. To find the condition under which this holds, use the
Lagrange Planetary Equations to get the changes in w and Q. Use
only the J2 portion of the disturbing function (R ) to simplify
the comparison. This is valid since, the affect of the J2
disturbing function is much greater than the solar effects. The

necessary partial of the Mars disturbing function are

OR,, 3n?g,RZ . . .
m . - 29 gini cosi
81 2 (1—92)3/2
(44)
_ , R
oR,, _ 3n*gR;e ( _ 3einti
de 2(1-e2)5/2 2
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The rates of change of 1 and v are then

3nJ, RZ
d . _ 2° _ cosi
dt 2a?(1-e2)?
(45)
3nJ,R2
dw _ 2_° (1 - 2 sin?i + cos?i
dt 2a?(1-e?)? 2
By comparing the magnitudes of these rates of change
/
dQ - dw - JzR:“];nz (46)
dt dt a’’/? (1-e2?)2
Therefore, the averaging of the solar motion is valid when
2, 1/2
JzReu];n (47)

a’’? (1_e2)2

This occurs for high eccentricity orbits with the lower bound of
eccentricity decreasing with increasing periapsis radius.
The majority of the orbits analyzed in the numerical section fall
into this category.

After several change of variables and assuming the Sun's
pseudo orbit to be circular, the time varying solar terms can be

removed. The slowly varying solar disturbing function becomes
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— n; a‘ .
Ry = == { [2+3e‘][% CoqSE,5% + %CISISISCIECQ
+ *i-(l - %SIZ,)(3 Ci'l)} * ._}25_62 {%ng(l-*C;) (Crg20*Can-20) (48)
2 3 a2
- C;S;C; Sy, (Cauza*Caize) * SI(l - ESI’)CM}
15 {1 2 1
- Te' [Z CISIS(Cm-zm - szzu) - ESI,SICI,(CQ—Z(A - CQ+2w)] }
where the mean motion of the Sun is
ng = p;. (49)
aS
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The Combined Mars and Solar Disturbing Function

The mean anomaly and the periodic effects of the Sun's

motion have been successfully averaged out of the disturbing

functions, resulting in

m s (50)

- J. RZ .
R = Hn Y2 fe (1 - 351r121)
2a3 (1_82)3/2 2

2
n; a2
+

{ [2+3e?] [%Czosrzssi * %CISISISCISCQ

- . (51)
5 553 c%—l)} el {ZS§,<1+C§) (Coge20*Coa-20)

sMd-cw

AN}

p 2 1
2 e’ [ZL Crsrs(czn—zo - Gaee) - ESI,SICI,(CQ—zw B CQ*Z(.))} }
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Determination of Critical Inclinations by Analvtic Methods

The long period variations in eccentricity and inclination
may now be obtained chrough use of Hamiltonian mechanics and
canonical transformations. Detailed explanitions are in ref (5).

The transformation of the disturbing function results in an
equation with six divisors. Eleven critical inclinations result

when these are equated to zero.

Table 1. Critical Inclinations

63.4 deg 116.6 deg
46.4 deg 106.8 deg
73.2 deg 133.6 deg
56.1 deg 111.0 deg
69.0 deg 123.9 deg
90.0 deg

These inclinations represent the limiting case for critical
inclinations and were derived with the simplification of solar
averaging. Due to the complexity of the problem, a systematic
numerical approach is necessary to ascertain the true nature of
the critical inclinations without the above simplifications.
However, the results in table (1) should roughly correspond to

any numeric results.

27




ITT. Numerical Development and Results

The analytical development oroduced eleven critical
inclinations resulting from resonant situations. This
occurred when terms in the denominator of the equations of
motion went to zero, thus indicating large amplitude motion.
However, in reality these amplitudes are not infinite. They
build up over time due to the aaaitive effect of the
resonance condition. The equations of motion are still
valid and can be numerically integrated as long as the
integration time is small enough that the amplitude does not
exceed the limitations of the computer (overflow condition).
The effect of the resonance will still be visible even with
the limited integration time. The amplitude of the motion
will not go to infinity, but will be large compared to non-
resonance conditions. Therefore, a numerical approach may
be used to find the critical inclinations.

This involves integrating a sufficient number of orbits
over a range of eccentricities, inclinations, and periapsis
altitudes (initial conditions) to permit the determination
of critical inclinations.

Equations of Motion

The numerical analysis used a transformed set of the
Lagrange Planetary Equctions used in the analytic analysis.
The change of variables was used *o simplify the

implementation of the equations on the computer. The same
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disturbing function used in the analytic approach was used
for the numerical integration. As discussed previously, the
mean anomaly is averaged out of the disturbing function
while still preserving the effects of the resonance
conditions. This averaging out of the mean anomaly eases
the numerical integration by simplifying the equations of
motion. The integration time is also greatly reduced. A
step size of days instead of minutes can be used.

Since the mean anomaly was averaged out and the r»rimary
interest was the slow variable changes, such as inclination
and eccentricity, the dM/dt equation was not needed.
Furthermore, the semi-major axis remains constant (da/dt=0)
since the mean anomaly was averaged out of the disturbing
function (JdR/dM=0). This reduced the number of relevant

Lagrange Equations to the following four:

de b &R __b oR
dt nate M  nale Jw

dai _ 1 orR | cosi dR

dat nab sini oQ nab sini dw

da _ 1

dt nab sini 91 (52)
do _ _ cosi OR , _b OR

dt nab sini di nale de

where b = ajl-e? & n = -J%
J a
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A change of variables from the classical (a,e,i,1,0,M)

to the new variables (a,h,k,n,AY,i) was then used to

facilitate the integration.

(53)

The transformation to the h and k variables avoids the

singularities due to the classical variable set (a,e,i,0,M).

The transformed equations are non-singular for zero

eccentricity, but singular for zero inclination. The

stroboscopic mean node (A,) transformation permits the

averaging of the motion due
variable, while maintaining
effects as discussed in the

derivatives are required in

to the fast mean anomaly
the longer term resonance
analytic section. The following

the transformation:

_ ,9OR

ke "On ok

(54)

OR JR Jh aR%=h8R+£@
de oh de ok de e dh e ok
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dh _ dhde, dnde _ hde ,  do
dt de dt Jdw dt e

dh 2(_ _b_) (k_az _ ha_)

dt e nale oh ok
(55)
- _cosi R, b (BOR, kR
nab sini 01 na’e( e oh e k)
dh _ b 3R _ _kcosi 3R
dt nal ok nab sini di
dk _ 3k de , 3k do _ kde _pdw
dt de dt dw dt e dt dt
dk _ kf_ _ b [ OR _ h_a_R)
dt e nale ( oh ok
(56)
i cosl 9%, b (A3, ki
nab sini di nale\ e oh e dk
dk __ _b 3R, _cosi R
dt na? oh nakt sini 91

The four relevant Lagrange Planetary Equations are then

transformed to the new elements.

dt na? oJk nab o1

di _ cot if p OR _ 4 OR) _ 1 OR

dt nab oh ak) nab sini oQ

dk __ b OR _  hcot i OR (57)
dt na?l oh nab 01

d _ 1 &

dt nab sin 1 01

where b=ayil-e® & e =h?® + k?
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Now the disturbing function must also be transformed to

the new variables (a,h,k,q,AY,i).

B, TR

R = (1 - 3sinzi)
2a’ (1-h?-k?)3/? 2
Bsa(1s
v {T[Cgc(ZQ—A) - (CiCiSig-a) ~ SiS:)?|(k? - h?) (58)
ar’

2
+ 30[C,5.5;C(q-a) - CiCiCia-aSia-a)hk
+(2 + 3h% + 3k? [%[Cfc(zo—m + (CiCrSian) - S1Sy)? - 1} }

The following four partial derivatives of this
disturbing function were then used in the transformed

Lagrange Planetary equations.

R _ 34 JoRek (1 !

= 2 sin?i
ok 2a3(1_h2_k2)5/2 2 sin l)

. B a’k

3

{15[C2C(20-A) - (CiC Sy ~ SLSI)Z]
arl

(59)

+

2
30[€.S.S:Cia-a) - CiCiCia-nSia-n] B

+

3
6k [E{Cchzmm + (CiCiS = 5150°%] - 1]}
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2
OR _ 3B nJaReh (1 - 3 sin? i)
oh 2a3(1-h3-k?)5/2 2
p.ah
== { - 15 [CEC(ZQ-A) - (C;C S - SLSi)Z]
4rg (60)

+

2
30[C;S.S;Ciaa) - CLCJLC(Q-A)S(Q—A)] k

+

3
6h [E[CEC?Q-A) + (CiCSa-n) ~ SLSi)z] ) l} }

-3u J RE .
_8_1_? = B mtaRe sin21
di  4a3(1-h?-k?)¥?

at )
p'4s N {15 (CiCLS(Q—A) - SLSi) (SiCLS(Q—A) + SLCi) (k2 - h?)
IS

+

+

2
30[C.S.CiClan * C?5,Cia-n Sia-n)] bk

i

3 (2+43h%+3Kk%) (CiCiSigp ~ SiSs) (S:CiSwan * SiC) }
(61)

OR _ usaz{__l_g

= (€28, (0-0+2 (CiC1S(a_p) ~51S;) CiC1Ca.n | (k*-h?)

2
- 30[C.S.8,Sq.n) * CiCiCyia-n] hK

|

_3- (2+3h2+3k?) [CLS; o) = 2 (CiCS(gopy - S.S)) CiC:Cia-ny }

(62)
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These partial derivatives of the disturbing function
combined with the modified Lagrange Planetary Equations were
then integrated for each set of initial orbital elements.

The full set of transformed Lagrange Planetary
equations, without the simplifications made previously, are

as follows (17,3-3):

34




da 2 1 OR

dh _ J1-e? 8R = kcoti 3R _ hy1-e? B/ dR
28

dt na* Ok 42 Ji-e? EN A
di _ __cot i (pOR _, OR 1 OR
dt na? yi-e? oh dk S, OAy
_ 1 (BR , _OR )
na? Ji-e? sin 1 0Q oA

dk _ _ Jy1-e®* JR , _hcot i OR _ kyl-e? B/ JR

dt na® ©6h  pa2 1oz Oi na s, oA
dQ 1 oR

de na? Jyi1-e? sin 1 91

. n_® 1 [ /1merp(n R OR | _ 55 OR
3 dt+na250{\/le B(hah+k6k) 2a

where n=|-% e=yA?+kZ P = 1

(63)
A = stroboscopic mean node e = eccentricity
8 = Greenwich hour angle a = semi-major axis
f1 = longitude of ascending node M = mean anomaly
w = argument of periapsis i = inclination

S, = ratio that approximates the number

of orbits per planet revolution
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Determination of Critical Inclinations

Critical inclinations were defined as those
inclinations that produce large variations in one of the
orbital elements. This numerical approach was looking for
critical inclinations in both eccentricity and inclination.

Search Method

The search was accomplished by giving each orbit two
figures of merit. These were the standard deviation in
eccentricity and inclination. While using the standard
deviation as a search criteria for critical inclinations was
not an ideal approach, it proved to be a satisfactory method
to handle the huge quantities of data that required
processing.

Procedure

The averaged equations of motion for a satellite were
numerically integrated over a 10 Earth year period for a
given set of initial conditions. The variable initial
conditions were systematically incremented to cover the
entire spectrum of possible orbits about Mars. Initial
conditions included the following:

r_ = variable periapsis radius (5000 km, 5500 Kkm,

p
6000 km, 6500 km, 7000 km, 7500 Kkm)

e = variable eccentricity (0.4 to 0.9, A = 0.02)
i = variable inclination (0.25 to 90., A = 0.25)
N =0 longitude of the ascending node

36




o =0 argument of periapsis

M=20 mean anomaly

For each orbit (set of initial conditions), the
standard deviation of the variations in eccentricity and
inclination were calculated using a linear, quadratic, and
cubic polynomial approximation to the variations.

Two dimensional plots of the standard deviation in
eccentricity (SDE) and standard deviation in inclination
(SDI) vs inclination were generated for each initial
eccentricity value. All the SDE vs inclination and SDI vs
inclination plots were combined into three dimensional
surface plots. These surface plots were then used to
identify the critical inclinations in both eccentricity and
inclination.

Surface Plots

A total of six sets of three dimensional surface plots
were generated. Each set contains six plots of the standard
deviation in eccentricity or inclination, for a given data
fit, versus initial insertion orbit eccentricity and
inclination. Linear, quadratic, and cubic data fits were
used in determining the standard deviations.

Only the 5000 km and 7500 km periapsis radius cases
include the linear, quadratic, and cubic data fits for SDE
and SDI. These demonstrate the effect of using higher order

polynomials in computing the standard deviations. Note the
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smoothing of the features and reduction in magnitudes. The
remaining surface plots are for a cubic data fit. The other

linear and quadratic data fit plots are in Appendix B and C.

Standard Deviation in Eccentricity (SDE) Surface Plots
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Standard Deviation in Inclination (SDI) Surface Plots

49




RACIAS OF PERIAPSIS

i
(1
&
[\
N}

—
TR ha
- T
—_—
-~
pL=TER —
<
=
—
—
-
EI N ~
. g",r‘_,q% :11
~
=
-
Soras -
MRCLT IS IR ~

Figure 16. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 5000 Km, Linear Data
Fit

50




T
)
O
i
C
&

CF PERIAPSIS = 5202 «mM

S

3

27 3
L S,

-

a3

=

S —
T Eeeae T
=

~

—~

N - —t
-
-

-

N

2 =
R R
i

Praatdl

Figure 17. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 5000 Km, Quadratic Data
Fit

51




NS T P
STZe5

&
td
&
P
b
o
LL 114 L[l.L_LlLJ.l_LLLJ_LJJJ_l L AL.LLJJ‘I Ld

/

=ADIUS CF PERIAPZIS

5RY KM

i
.
I & |
r T e 2
Ponut &= S
i & > L=
= s
—— -
. ~ —
=
A < - o, o
- o p)
< -~ - ’ (==} v
- o '\ ="

Figure 18.

and Eccentricity:
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2-D Critical Inclination Plots

For each of the SDE surface plots, a numerical
procedure was used to sort the data and locate the
predominate local maximums. These form the ridges in the
surface plots and indicate the critical inclinations. Cubic
polynomials were fitted to the local maximum data and then
plotted on a two dimension graph of the initial eccentricity
vs initial inclination (orbit insertion). These are the
plots of critical inclination as a function of insertion
eccentricity and inclination. Two-dimensional contour plots
of the surfaces for a cubic data fit are also included. The
linear and quadratic data fits not included here are in
Appendix D. The features in the SDI surface plots were not
predominate enough to locate accurately and were not
plotted.

The curves for the linear, quadratic, and cubic data
fits in calculating the standard deviations were roughly
similar. As expected, some of the curves disappeared with
the higher order fits due to the decreasing magnitudes of
the standard deviations. However, the curves were also
shifted in position. They exhibited a shift to lower
eccentricities and a shift away from a dividing line of 53.3
degrees initial inclination.

Critical Inclination Curves for SDE
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Critical Inclination Curves: Periapse Radius =
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Figure 33. 2-D Contour
Cubic Data Fit
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Figure 34. Critical Inclination Curves: Periapse Radius =
6500 Km, Cubic Data Fit
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Figure 36. Critical Inclination Curves: Periapse Radius =
7000 Km, Cubic Data Fit
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Figure 37. 2-D Contour Plot: Periapse Radius = 7000 Km,
Cubic Data Fit
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Figure 38. Critical Inclination Curves: Periapse Radius =
7500 Km, Linear Data Fit
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Figure 40.
7500 km, Cubic Data Fit
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Figure 41. 2-D Contour
Cubic Data Fit
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Figure 42. Primary Critical Inclination Curves for SDE
(Cubic Data Fit)

Equations for curves of figure 42:

~1956.28e3+44150.69e%-3008.36e+794.74

iA
For 0.68 s e, s 0.88

I, =-1012.10e%+1968.60€%2-1336.05e+367.94
For 0.61 < e5<=0.86

I.= - 445.74e%+ 570.55e%- 233.95e+ 80.66
For 0.59 < e.x<0.83

(64)
-1121.95e3+2053.21e2-1324.73 e+344.94

(SN
O
I}

For 0.52 < e,% 0.79

I.= =751.01e3+1235.47e%- 743.30e+206.72

For 0.46 s e; s 0.77

I,= -731.68e%+1108.97e? -619.54e+170.27

For 0.40 < e, s 0.74
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IV. Conclusions and Recommendations

Critical inclinations were defined as those initial
inclinations which result in a large variation in either
eccentricity or inclination. The location of these
inclinations through numerical means was the desired goal.

To provide a bound on the problem, an analytic method
was outlined (e.g., see Breakwell ref. 5). This resulted in
eleven critical inclinations based on the simplifications of
averaging out the mean anomaly terms and averaging the

affects of the Sun.

Table 3. Critical Inclinations
63.4 deg 116.6 deg
46.4 deg 106.8 deg
73.2 deg 133.6 deg
56.1 deg 111.0 deg
69.0 deg 123.9 deg
90.0 deg

However, this method didn't bring out the dependence of the
critical inclination on initial eccentricity and periapsis
height.

The numerical approach involved the integration of

orbits over a range of initial eccentricities and

70




inclinations. The standard deviations in eccentricity (SDE)
and inclination (SDI), based upon a polynomial curve fit to
the data, were employed as the search parameters. The local
maximums in the surface plots of SDE and SDI vs initial
conditions indicated the resonances and thus the critical
inclinations (e.g., see figures 6-25).

The SDI plots proved to be relatively smooth and no
predominate features were discerned. Therefore, critical
inclinaticne for large variations in inclination were not
determined.

However, the SDE plots demonstrated numerous resonant
conditions. The curves for critical inclinations were
identified and roughly corresponded to the analytic results
(e.g., see table 1).

Experimenting with higher order polynomial curve fits,
in calculating the standard deviations, resulted in a
smoouching of the surface plots as expected. The more
accurate curve fits reduced the magnitude of the deviations
and brought out the predominate resonance effects (e.g., see
figure 42). The equations for these curves indicated the
critical inclinations were a function of the initial
conditions.

A second effect of the higher degree polynomial data
fits was a shifting of the critical inclination curves.

Increasing the degree rf the polynomial shifted the critical
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curves toward decreasing eccentricity and away from a
dividing line of 53.3 degrees initial inclination. This
dividing line also corresponded to the approximate
inclination of the predominate resonance effects (e.g., see
figure 42) and the analytic critical inclination of 56.1
degrees.

Based on these results, the numeric approach utilizing

the standard 'deviation as a search parameter provided a

means of identifying the critical inclinations for large

variations in eccentricity. Furthermore, the use of higher
degree polynomial data fits in determining standard
deviations assisted in isolating the predominate resonance
effects.

A further study could explore the shifting of the
critical inclination curves for higher degree polynomial

data fits. Non-polynomial data fits may also be explored.
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Appendix A. Hansen's Coefficients

The following is a more detailed explanation of the
steps used in deriving the disturbing functions using
Hansen's Coefficients. A complete explanation of Hansen's
Coefficients is in reference (2).

Let

x = exp(jf), y=exp(jB), z=exp(jM), j=y-T

where f is the true anomaly, M is the Mean anomaly, and E is

the eccentric anomaly. Hansen's coefficients are then

defined
xpm e 2 [T (£)" xm 2> a (66)
Q
For p=0:
Im| ( +im|+1 -n- |- o (67
e (g () R s e s e (7

where F is the hypergeometric function [1:272-277] defined

- (&) (b) n
F = b c; = L n Y, 1 (68)
(a c;y) %$ (. Y ly| <

One property of Hansen's Coefficients is
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Xén'n=Xén'_n (69)

The Pochhammer symbol (a), has the following properties:

(a), = 1
(1) , = n! (70)
(a) , = a(a+1) (a+2) ***(a+n-1) n=1,2,3,...

The Pochhammer symbol and the binomial coefficient are

related by

(a) , = (-1) 7 n! ('na) (71)
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Derivation of Integral Terms in the Disturbing Functions

Derivation of Egn. (11):

2T
ANz
.2
= (1) (1) ) 1(1§i)n ijﬂ (72)

3
X2% = (1 -e?) 2 (73)

Derivation of Egn. (11):

Using the identity

sin2f = lexp (j2f) - exp(-j2f) ]

o
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27

= 1 fz" (l) L {exp(j2f) - exp(-72f) ] aM
27 Jo a
l l 2n r -3 . l 2n r -3 . T‘

= e —— —_— - — — - 2f) dM
57 3% L (a) exp (j2£f) dM b L (a) exp (-7 ;
1 -3,2 -3,-2y _

= *2—5 (XQ - XO ) =0

Derivation of Eqgn. (11):

Using the identity

cos2f = % [exp (§2f) + exp (-j2f) ] (76)

then

1] 1 2R -2 , 1 2n [ ry\"3 _5 "
- 3_2?fo (;) exp (j2f) aM + == [ (a) exp (-j2£) aif
=_% PQBJ . X5L2)= XELZ
(77)
_3’2: _—eZ 0 i- . P = 78
X; ( 2) (Z)F(2,2,3,e) 0 (78)
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"y L — . - . T N Y T - LN}

Derivation of Egn. (41):

2n
- ?1{ fo“ (é) -3- [exp (j2f) + exp (-72£) 1 aM
= %[_2_1; ];2“ (%)2 exp (j2f) dM + ——f (—) exp (-j2f) dMJ
= % (X352 + x3'%) = x§°°

(79)

2
= (%2)(10) (1) (80)
_ 5e?

2

Derivation of Egn. (41):

_1_j (é)z sin2f aM =

I
|-
R

an (.£)2 __1_ lexp (j2f) - exp(-j2f)] aM
al 273

27

17 1 2n [ r\2 r\e . K
= = = = 2fdM—— =) exp(-j2f) dM
2{21:.{0 (a) exp (721) f (a) p(-J )
1 .2 -
=—2—(xg2 - X =0

(81)
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Derivation of Egn.

1
2T

(41):

= (_%)n(-l)" en
(1) (1) ’g - —
1+ %%eﬂ
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Figure 44. Standard Deviation in Eccentricity
Inclination and Eccentricity: Periapse Radius
Quadratic Data Fit
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Standard Deviation in Eccentricity vs

Figure 47.
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Figure 48. Standard Deviation in Eccentricity vs
Inclination and Eccentricity: Periapse Radius = 6500 Kn,
Quadratic Data Fit
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Figure 49. Standard Deviation in Eccentricity vs
Inclination and Eccentricity: Periapse Radius = 7000 Knm,
Linear Data Fit

85




RADIUS OF PERIAPSIS = 7000 M

o
P Rag,

[y

ooy

a'®®216

-89123

@.Q@gze

Figure 50. Standard Deviation in Eccentricity vs
Inclination and Eccentricity: Periapse Radius = 7000 Kn,
Quadratic Data Fit
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Appendix C. SDI Surface Plots
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Figure 51. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 5500 Km, Linear Data
Fit
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Figure 52. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 5500 Km, Quadratic Data
Fit
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Figure 53. Standard Deviation in Inclination vs Inclination

and Eccentricity: Periapse Radius = 6000 Km, Linear Data

Fit
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Figure 54. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 6000 Km, Quadratic Data
Fit
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Periapse Radius = 6500 Km, Linear Data

91




RADIJS OF PERIAPSIS = 6223 &M

CHEEG

A=
72 lamg

prvatbioiriadianiod il

E‘Lqure 56. Standard Deviation in Inclination vs Inclination
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Fit
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Figure 57. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 7000 Km, Linear Data
Fit
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Figure 58. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 7000 Km, Quadratic Data
Fit
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Appendix D. Critical Inclination Plots
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Figure 59. Critical Inclination Curves: Periapse Radius =
6500 km, Linear Data Fit
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Figure 60. Critical Inclination Curves: Periapse Radius =
6500 km, Quadratic Data Fit
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